Enhancement of Information Transmission Efficiency by Synaptic Failures

نویسنده

  • Mark S. Goldman
چکیده

Many synapses have a high percentage of synaptic transmission failures. I consider the hypothesis that synaptic failures can increase the efficiency of information transmission across the synapse. I use the information transmitted per vesicle release about the presynaptic spike train as a measure of synaptic transmission efficiency and show that this measure can increase with the synaptic failure probability. I analytically calculate the Shannon mutual information transmitted across two model synapses with probabilistic transmission: one with a constant probability of vesicle release and one with vesicle release probabilities governed by the dynamics of synaptic depression. For inputs generated by a non-Poisson process with positive autocorrelations, both synapses can transmit more information per vesicle release than a synapse with perfect transmission, although the information increases are greater for the depressing synapse than for a constant-probability synapse with the same average transmission probability. The enhanced performance of the depressing synapse over the constant-release-probability synapse primarily reflects a decrease in noise entropy rather than an increase in the total transmission entropy. This indicates a limitation of analysis methods, such as decorrelation, that consider only the total response entropy. My results suggest that synaptic transmission failures governed by appropriately tuned synaptic dynamics can increase the information-carrying efficiency of a synapse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy-efficient neuronal computation via quantal synaptic failures.

Organisms evolve as compromises, and many of these compromises can be expressed in terms of energy efficiency. For example, a compromise between rate of information processing and the energy consumed might explain certain neurophysiological and neuroanatomical observations (e.g., average firing frequency and number of neurons). Using this perspective reveals that the randomness injected into ne...

متن کامل

GABAergic system for Ptychodiscus brevis toxin-induced depression of synaptic transmission elicited in isolated spinal cord from neonatal rats

The involvement of inhibitory transmitters for Ptychodiscus brevis toxin (PbTx)-induced depression of spinal synaptic transmission in neonatal rats was investigated. Stimulation of a dorsal root evoked monosynaptic reflex (MSR) and polysynaptic reflex (PSR) potentials in the segmental ventral root. The PbTx depressed the reflexes in a concentration-dependent manner and this depression was block...

متن کامل

GABAergic system for Ptychodiscus brevis toxin-induced depression of synaptic transmission elicited in isolated spinal cord from neonatal rats

The involvement of inhibitory transmitters for Ptychodiscus brevis toxin (PbTx)-induced depression of spinal synaptic transmission in neonatal rats was investigated. Stimulation of a dorsal root evoked monosynaptic reflex (MSR) and polysynaptic reflex (PSR) potentials in the segmental ventral root. The PbTx depressed the reflexes in a concentration-dependent manner and this depression was block...

متن کامل

P24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP

Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...

متن کامل

P19: Long-Term Potentiation

The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 16 6  شماره 

صفحات  -

تاریخ انتشار 2004